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The strength data of brittle materials, e.g., ceramics,
have long been known to exhibit a wider degree of scat-
ter when compared to that of ductile materials, resulting
in implications for the reliability of structural ceramics
[1]. This scatter of material strength is often found to
follow the well-known empirical relationship proposed
by Weibull [2]:

P = 1 − exp
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∫
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)m

dX

}
(1)

where P is the probability of failure at a stress, σ , m
is known as the Weibull modulus, σu is the stress at
which P = 0, X is the strength-limiting dimension of
the material (usually either volume or surface area),
and σo is a normalizing factor. The value of σu, the
stress threshold below which failure does not occur, is
normally taken to be zero [3] and thus, for specimens
of constant geometry, Equation 1 may be rewritten as:

P = 1 − exp

{
−

(
σ

σo

)m}
(2)

Although for many years this relationship was applied
to experimental data on an empirical basis, the work of
Jayatilaka and Trustrum [4] has provided a theoretical
background with the form of Equation 2 being related
to the probability density, f (a), of flaw sizes within the
material with f (a) being approximated by [5]:

f (a) = cn−1

(n − 2)!
a−ne−c/a (3)

where n is the rate at which f (a) tends to zero for
a � c/n and c is a scaling parameter. Jayatilaka and
Trustrum showed that, assuming there to be a large
number of randomly oriented flaws, m and n are related
through [4]:

m = 2n − 2 (4)

Thus, the scatter in strength data is directly related to the
shape of the flaw size distribution. The most common
method of obtaining σo and m from a series of data has
been to rank the σ data from smallest to largest and

assign P values according to:

P = i

N + 1
(5)

where i is the rank and N is the total number of spec-
imens. Equation 2 may then be linearized using the
form:

y = A + Bx (6)

where

y = ln

[
ln

(
1

1 − P

)]
, A = −m ln σo,

B = m, and x = ln σ.

From this, the best estimates of σo and m, respectively
σ ∗

o and m∗, can be obtained using the linear least squares
(LLS) method, i.e.,

A = �x2�y − �x�xy

N�x2 − (�x)2 (7a)

B = N�xy − �x�y

N�x2 − (�x)2 (7b)

with �, x , and y in Equations 7a and b being abbrevia-
tions for

∑N
i=1, xi , and yi , respectively. The application

of LLS analysis to Weibull curve fitting remains popular
amongst scientists and engineers due to its simplicity.

Whereas the majority of researchers wishing to ob-
tain m from a set of data using the LLS technique as-
sume m = m∗, this is not generally the case as the mean
value of m∗, m∗

mean, is biased with m∗
mean < m. The bias

increases with decreasing values of N such that, for a
value of m = 5 typical for glass and ceramic fibers [6–
9], m∗

mean/m is approximately 0.96 for N = 150 and
0.863 for N = 10 [10].

The reason for the bias in m∗
mean is directly related to

an assumption utilized in the LLS technique that the er-
ror for each set of {x , y} data points in Equation 6 is dis-
tributed symmetrically about a mean value according
to a Gaussian function [11]. While usually true for the
{σ, P} data set, application of the non-linear transfor-
mation on Equation 2 renders this assumption invalid.

Attempts to reduce the bias in m∗
mean have fol-

lowed several approaches including: (i) use of different
relationships to calculate P [12, 13], (ii) use of weight-
ing factors for each data point [14–16], (iii) use of
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parameter estimation methods other than LLS (such
as “method of moments” and “maximum likelihood”)
[16, 17], and (iv) omission of certain data points [18].
While these methods have resulted in less biased values
of m∗

mean, they each suffer from one or more of the fol-
lowing deficiencies: (i) the improved m∗

mean value still
exhibits a degree of bias, (ii) similarly invalid assump-
tions are utilized as for the case of LLS, (iii) lack of
physical meaning, and (iv) difficulty of use. It is per-
haps as a result of these issues that utilization of bias
reduction methods in the literature appears to be limited
at best.

In light of this, the author recently proposed [10] that
the bias in values of m∗ obtained by the LLS technique
could be significantly reduced using a simple empirical
correction factor. The rationale behind the work was
that the bias in m∗

mean obtained using the LLS technique
can be accurately determined for any value of N and m
given a sufficient number of data sets. Compared to the
techniques mentioned above, such a procedure would
have the advantages of: (i) significantly reducing the
bias, (ii) providing a best estimate of m with minimum
effort, and (iii) being easily applied to both future and
historic data sets.

In the initial investigation [10], an empirical correc-
tion factor was determined for the case of m = 5 and
10 < N < 150 with only a single value of m being cho-
sen due to a lack of computing resources. Despite this,
the correction factor was shown to be successful in re-
ducing the bias in m∗

mean to within less than 1% of m
and would thus appear to be a good candidate for reduc-
ing the bias in m∗ data. In contrast to the approach of
the previous investigation, the aim of the present work
will be to obtain an empirical correction factor that is
applicable over a wide range of useful m values.

The empirical correction factor in the present investi-
gation was calculated from a large number of data sets
generated using a Monte Carlo method in the range
1 < m < 50 and 10 < N < 50. For each data set, N
values between 0 and 1 were randomly chosen {P1,
P2, P3, . . . PN } and used to generate values of σ , {σ1,
σ2, σ3, . . . σN }, according to Equation 2 (with σo being
nominally set to unity). The σ data was then ranked
from smallest to largest with a revised set of P data
being obtained using Equation 5. The {σ , P} data was
then linearized according to Equation 6 with values of
m∗ and σ ∗

o being calculated using Equations 7a and b.
This procedure was repeated 107 times for each value
of N and m (as opposed to 104 times in the previ-
ous work [10]) to result in a frequency distribution of
m∗. The value of m∗

mean was simply calculated from
m∗

mean = �m∗/107 whereas the mode of m∗, m∗
mode,

was calculated from the frequency of m∗ values within
incrementally increased ranges of m∗.

Frequency distributions of m∗ for the case m = 4
and N = 10, 20, . . . 50 have been presented in Fig. 1
with the area under each curve being set equal. Whereas
the N = 10 curve was noted to be highly unsymmet-
rical (i.e., the mean, median, and mode were signifi-
cantly different) and shifted (i.e., biased) towards lower
values of m∗, larger values of N resulted in improved
symmetricity of the curves and reduced bias in m∗. An-

Figure 1 Frequency distributions of Weibull modulus, m∗, obtained us-
ing the linear least squares method for data sets containing N specimens
(N = 10, 20, . . . 50) and m = 4.

other important point apparent from this figure was the
increasing difference in mean and mode values as N
decreased. Whereas past research [12–18] has tended
to concentrate on the bias exhibited by m∗

mean, materi-
als science and engineering researchers generally only
have limited sets of data available and it is the author’s
believe that m∗

mode (i.e., the value of m∗ with the highest
probability of occurrence) is a more important indica-
tor of bias in m∗; the reason being that, for any given
test, the region of highest probability for the resulting
m∗ value will be centered around m∗

mode. However, for
the sake of completeness, empirical correction factors
have been calculated for both m∗

mean and m∗
mode in the

present work.
The effect of N and m on m∗

mean and m∗
mode have been

presented in Fig. 2a and b, respectively; the smoother

Figure 2 Values of Weibull modulus, m∗, calculated from least squares
analysis as a function of specimen number and theoretical Weibull
modulus: (a) mean (m∗

mean) and (b) mode (m∗
mode).

1442



Figure 3 Comparison between mean (m∗
mean) and mode (m∗

mode) Weibull
modulus data obtained from least linear squares analysis together with
confidence limits of the m∗ data for the case m = 4.

contour lines for the m∗
mean data (Fig. 2a) being a result

of the more accurate estimation of m∗
mean when com-

pared to that of m∗
mode. It can be seen that m∗

mean and
m∗

mode were both biased towards lower values of m for
the entire range of N investigated in this work with
m∗

mode < m∗
mean < m. This trend has been clearly indi-

cated in Fig. 3 which shows m∗
mean and m∗

mode as a func-
tion of N for the case m = 4. Overall, the fractional
bias ranged from 0.0709 to 0.1306 for m∗

mean (aver-
age: 0.0945) and 0.0710 to 0.2660 for m∗

mode (average:
0.1368) and generally decreased with increasing N and
m. The confidence limits in Fig. 3 also indicated a large
degree of uncertainty associated with estimating m for
small N values; the fractional error in m being on the
order of ±0.8 for the case of N = 10 and a 99% con-
fidence limit. The confidence limits also highlight the
highly unsymmetrical nature of the m∗ distributions for
small N values.

The data shown in Fig. 2 was fitted using a large
number of arbitrary equations in order to obtain em-
pirical correction factors for m∗

mean and m∗
mode. While

many equations were found to fit the m∗
mean and m∗

mode
data sets to a similarly high degree of accuracy (cor-
relation coefficient > 0.999), it was decided to focus
on equations that: (i) were relatively simple in form,
and (ii) possessed a small number of parameters. The
empirical correction factors were thus chosen to be:

m = Exp

[
Ao + A1

N 1/2
+ A2

N 3/2
+ A3 ln(m∗

mean)

]
(8a)

m = Exp

[
Ao + A1 ln(N )

N
+ A2

N 3/2
+ A3 ln(m∗

mode)

]

(8b)

with the respective constants being given in Table I. In
order to understand the goodness of fit for Equations 8a
and b, residual magnitudes after fitting these equations
to their respective data in Fig. 2 have been presented in
Fig. 4 with the residuals being on the order of 0.01%
for m∗

mean and 1% for m∗
mode. The significantly higher

residual values for m∗
mode were attributed to the noisier

data set in Fig. 2b as a result of the m∗
mode calcula-

tion method rather than to any issue with Equation 8b.

TABLE I Values of constants used in Equations 8a and b

Constant Mean (Equation 8a) Mode (Equation 8b)

A0 −0.015110 (+/−0.000033) 0.015844 (+/−0.003102)
A1 0.661820 (+/−0.000187) 0.951540 (+/−0.025727)
A2 −1.717104 (+/−0.001249) 1.545974 (+/−0.150392)
A3 0.999998 (+/− 0.000006) 0.999769 (+/−0.000675)

Figure 4 Magnitude of the residuals (%) after fitting the empirical equa-
tions to Weibull modulus data calculated from least squares analysis:
(a) mean (Equation 8a), and (b) mode (Equation 8b).

It was also noted from Fig. 4 that the residual mag-
nitudes indicated a general decreasing trend with
increasing N . This can be more clearly seen in Fig. 5,
which presents residual magnitudes averaged across
the range of m values as a function of N . Over the
range of N and m investigated, use of the empiri-
cal correction factors reduced the fractional bias in
m∗

mean by a factor of 1464 to <0.0001 (range: <0.0001

Figure 5 Magnitudes of the residuals as a function of specimen number
after fitting the empirical equations to m∗

mean (Equation 8a) and m∗
mode

(Equation 8b). Each curve was obtained by averaging over the range of
m values (i.e., 1–50) investigated in this work.
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to 0.0004) and by a factor of 17 in m∗
mode

to 0.0081 (range: <0.0001 to 0.0459); signifi-
cantly lower than that obtained by any of the
fitting methods previously proposed [12–18] over such
a wide range of N and m.

In summary, empirical correction factors have been
calculated that significantly reduce the bias in the value
of Weibull modulus obtained using linear least squares
analysis. It is hoped that the relatively simple nature of
the correction factors will promote widespread use in
the materials science and engineering communities.
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